
Introduction
Le but du présent document est d’expliquer pourquoi lorsqu’on résout une EDO d’ordre 2 :

ay′′ + by′ + cy = q

en utilisant la variation de la constante (avec y1 et y2 deux solution linéairement indépendantes de
l’équation homogène ay′′ + by′ + cy = 0) on pose le système

C ′1(x)y1(x) + C ′2(x)y2(x) = 0

C ′1(x)y′1(x) + C ′2(x)y′2(x) = 1
aq(x).

Considérons donc, a ∈ R∗, b, c ∈ R, q : I → R et y1 et y2 deux solutions linéairement indépendantes
de l’équation homogène ay′′ + by′ + cy = 0.

Equation d’ordre n ou système d’ordre 1, c’est la même chose
Remarquons que trouver une solution y : I → R de

ay′′ + by′ + cy = q (E)

est équivalent à trouver une solution u = (u1, u2) : I → R2 de
u′1 = u2

u′2 = 1
a (q − bu2 − cu1) ,

⇔ u′ = Mu + Q (S)

avec

M =

 0 1

− c

a
− b

a

 Q =
[ 0

q

a

]
.

En effet, si y est une solution de (E), en posant u = (u1, u2) := (y, y′), on a

u′1 =y′ = u2

u′2 =(y′)′ = y′′
(E)= 1

a

(
q − by′ − cy

)
= 1

a
(q − bu2 − cu1)

et donc u est une solution de (S).
Inversément, si u = (u1, u2) : I → R2 est une solution de (S), posant y := u1, on a y′ = u′1 = u2, donc
u′2 = y′′ et

ay′′ + by′ + cy =au′2 + bu2 + cu1
(S)=a

1
a

(q − bu2 − cu1) + bu2 + cu1 = q,

et donc y est une solution de (E).
Plus généralement, une équation différentielle d’ordre n est toujours équivalente à un système d’ordre
1 à n équations :

E(x, y, y′, ..., y(n)) = 0 ⇔



u′1 − u2 = 0
u′2 − u3 = 0

...
u′n−1 − un = 0

E(x, u1, u2, ..., un−1, un, u′n) = 0
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Variation de la constante dans le système d’ordre 1 à 2 équations.
On essaie de résoudre

ay′′ + by′ + cy = q

pour ceci, on a déjà y1 et y2 deux solution linéairement indépendantes de l’équation homogène ay′′ +
by′ + cy = 0.
Traduisons ceci en système : Si u = (u1, u2) = (y1, y′1) et v = (v1, v2) = (y2, y′2), alors, on peut vérifier
que

u′ = Mu et v′ = Mv.

(Les arguments sont donnés dans la preuve qu’une solution de (E) donne une solution de (S) dans le
cas particulier où q = 0.)
Cherchons une solution de la forme u(x) = C1(x)u(x) + C2(x)v(x), où Ci : I → R. On a

u′(x) =C ′1(x)u(x) + C1(x)u′(x) + C ′2(x)v(x) + C2(x)v′(x)
=C ′1(x)u(x) + C ′2(x)v(x) + C1(x)Mu(x) + C2(x)Mv(x)
=C ′1(x)u(x) + C ′2(x)v(x) + M (C1(x)u(x) + C2(x)v(x))︸ ︷︷ ︸

=u(x)

=C ′1(x)u(x) + C ′2(x)v(x) + Mu(x).

Ainsi, pour que u soit une solution, il faut et il suffit que C ′1(x)u(x) + C ′2(x)v(x) = Q(x), c’est-à-dire
(en écrivant cette équation composante par composante)

C ′1(x)u1(x) + C ′2(x)v1(x) = 0

C ′1(x)u2(x) + C ′2(x)v2(x) = 1
aq(x).

en utilisant que (u1, u2) = (y1, y′1) et que v = (v1, v2) = (y2, y′2), on déduit que ce système est en fait
C ′1(x)y1(x) + C ′2(x)y2(x) = 0

C ′1(x)y′1(x) + C ′2(x)y′2(x) = 1
aq(x).

qui est exactement le système qu’on a posé.

2


